

C12 Receiving Card

Specification V3.5

Shenzhen Mooncell Electronics Co., Ltd

1 Product Overview

Product Introduction

Mooncell C12 is a small sized & high-end receiving card that independently researched and developed by Mooncell, it could load 8192 pixels; with its strong processing ability, super reliability and its high competitive price, the product has been widely used and loved by the customers. The size of the C12 Card is quite small: 70mm x 24mm, that's the smallest card of its kind among its rivals in the industry, saving a lot more space, using less external cables, simplifying the design of the led display structure, reducing the difficulty of the design, helping customer to achieve the unprecedented innovative designs; the C12 actually solves quite a few problems: Limited Space, Screen Protection, After Sales Service, Price, etc, which will further provide a competitive advantage for differentiated product design.

Product Features

- It features the small size and thickness, saving a lot more space for the narrow cabinet and space of the led strip(bar).
- The output features the universal 2.0mm connector, with high stability and reliability.
- It features the advanced image processing core, which has greatly improved the performance of the displaying.

Mooncell

- The single card supports 24 groups RGB data output in serial connections,8 groups in parallel, and 4 clock are supported to be expanded.
- > The loading capacity: 8192 pixels.
- > Ultra small size design : 70mm x 24mm, solving the space design difficulty.
- > With strong Led Driver IC compatibility, supporting the driving of all chips.
- > It supports a safe upgrading.
- > It supports lightness and color calibrations.
- It supports arbitrary offset, the contents could be arbitrary rotated, so that to support the connection of the special-shaped led displays.
- It reduces the quantity of the cables and connectors that will be used, simplifies the structure design of the led screen. The signal transmission will be via just the 2core Cat5 twisted pair cable, which could combine the wiring of the led display signal and power supply into just one design. And the external cascading connection line changes from the traditional 2 in & 2 out to 1 in & 1 out.
- The led module can be integrated with the receiving card in a modular design, in the event of a failure, only the module needs to be disassembled and replaced separately, which makes the after sale service maintenance more simple and reduces subsequent maintenance costs.
- It features a fully enclosed design, simplify the design, improve the EMC and help to pass the EMC Certifications.

Application Scenarios

It could be widely used for LED Strip Screens, Film Screens, Glass Screens, Grid Screens, Lighting Screens and other application scenarios with strict space requirements.

<u>2</u> Function Introduction

Displaying Effect

	Reduce the delay of the video source on the receiving card.				
Low latency	Latency as low as 1 frame (for light boards with driver ICs				
	using built-in RAM)				
	With independent master and software that supports RGB				
	independent gamma adjustment, By adjusting the "red				
RGB Independent	Gamma", "green Gamma" and "blue Gamma" respectively,				
Gamma Adjustment	Effectively deal with the problems of the display screen, such				
	as uneven low gray, white balance drift, etc. Make the display				
	more realistic.				
Multiple Solutions of the	Using it with Monncell AutoLED Software, the Refresh and				
Displayed Effects are	Grey Scale performances are able to take the precedence				
Supported	over other settings.				
The Images on the led					
screen can be rotated	Liging it with Magnaell Autol ED Software				
90 degree in a factor of	Using it with Mooncell AutoLED Software.				
multiple times					
	Using it with the Mooncell Calibration Software to calibrate				
Pixel Level Brightness	each one of the pixels on its brightness and Chroma. It can				
and Chroma Calibration	effectively eliminate the Chromatic aberration so as to				
are supported	enhance its consistency of the brightness and Chroma to a				
	high level and result in a better displayed effect.				

Enhanced Operability

Data Port User-Defined is	Using it with the Mooncell AutoLED Software, you can
supported	detect and edit the output data of the receiving cards.
To build up a complicated cabinet is supported	On AutoLED Software, there is an 'Advanced Setting', from here you can quickly arrange or structure the modules at your option.
To structure a complicated Led Screen	On AutoLED Software, there is a "Complicated Led Screen Connection", from here you can quickly arrange or structure
is supported	the cabinet modules on your option.

Hardware Stability

	Network Port Backup: The 2 Network Ports on the HUB enhanced	
	Hot	the reliability of its series connection by having the main network
	Backup(Online	cable Loop Backup. Whenever a network cable fails, the other one
Backup)	will take the job to keep the led screen running properly.	

<u>3 Product Parameters</u>

Basic Parameters

Serial Connection	maximum	Loading Capacity After	Loading Capacity
Data (RGB)	Loading capacity	lightness Calibrating	after Color
/Parallel	(pixels)	(Pixels)	Calibrating(Pixels)
24 Groups Serial	8192	8192	4096
Connection data			
8 groups parallel	64X128	64X128	64X64
connection data			

Single Network	Scanning Lines	Clock Expansion
Pot Cascading Quantity	Supported	
≤1000PCS	1-4 Scans	4 Groups of Clock are supported

Hardware Introduction

www.mooncell.com.cn

Ports Illustration

#	Positi	Illustration		
1	P2	P1: Signal Interface to transfer the signal to the led screen.(output)		
2	P1	P2:Signal Interface to transfer the signal to the led screen.(output)		
2	JP1	Signal Input Interface, the signal will be inputted from the splicer MTB(SH)100		
3	JP2	Signal Output Interface, the signal will be cascading outputted to the next receiving card.		
	D1	Power Indicator		
4	D2	Status Indicator		
5	P3	External Button Indicator Interface		

Output Ports Definition

24 Groups of Parallel Data PIN Definitions:

P2 Interface Definition Illustration.

Illustration	Definition	PIN	PIN	Definition	Illustration
	+5V	1	2	+5V	
	GND	3	4	GND	
	DATA1	5	6	DATA2	
PCP Social Output Data	DATA3	7	8	DATA4	PCP Social Output Data
RGB Serial Output Data	DATA5	9	10	DATA6	RGB Serial Output Data
	DATA7	11	12	DATA8	
Displacement Clock 1	CLK1	13	14	CLK2	Displacement Clock 2
Displacement Clock 3/Decoding Signal C	CLK3/C	15	16	CLK4/D	Displacement Clock 4/Decoding Signal D
LATCH	LE	17	18	OE	Display-ENABLED
Line Coding Signal	A	19	20	В	Line Coding Signal

Description:

1. When using 5958 decoding driver, the decoding signal A is used as the DCLK signal of 5958, the decoding signal B is used as the BK signal of 5958, and the decoding signal C is used as the DIN signal of 5958.

2. When 4 sets of clocks are used, the scanning signal can only be connected to A and B signals; that is: when 4 sets of clock expansion are supported at most, the 15 and 16 pins of P2 are used for CLK3, CLK4; (default normal program)

3. When using A, B, C, D scan signals, the clock can only be extended by 2 groups; that is: when the scan is greater than 4 scans, the 15 and 16 pins of P2 are used for C and D signals (customized program)

www.mooncell.com.cn

P1 Interface Definition Illustration.

Illustration	Definition	PIN	PIN	Definition	Illustration
	+5V	1	2	+5V	
	GND	3	4	GND	
	DATA9	5	6	DATA10	
	DATA11	7	8	DATA12	
	DATA13	9	10	DATA14	
RGB Serial Output Data	DATA15	11	12	DATA16	RGB Serial Output Data
	DATA17	13	14	DATA18	
-	DATA19	15	16	DATA20	
	DATA21	17	18	DATA22	
	DATA23	19	20	DATA24	

8 Groups of Parallel Data PIN Definitions:

P1 Interface Definition Illustration

Illustration	Definition	PIN	PIN	Definition	Illustration	
	+5V	1	2	+5V		
	GND	3	4	GND		
	R1	5	6	G1		
RGB Parallel Output Data	B1	7	8	R2	RGB Parallel Output Data	
	G2	9	10	B2		
	R3	11	12	G3		
Displacement Clock 1	CLK1	13	14	CLK2	Displacement Clock 2	
Displacement Clock	CLK3/C	15	16	16 CLK4/D	Displacement Clock	
3/Decoding Signal C					4/Decoding Signal D	
LATCH	LE	17	18	OE	Display-Enabled	
Line Decoding Signal	А	19	20	В	Line Decoding Signal	

www.mooncell.com.cn

Description:

1. When using 5958 decoding driver, the decoding signal A is used as the DCLK signal of 5958, the decoding signal B is used as the BK signal of 5958, and the decoding signal C is used as the DIN signal of 5958.

2. When 4 sets of clocks are used, the scanning signal can only be connected to A and B signals; that is: when 4 sets of clock expansion are supported at most, the 15 and 16 pins of P2 are used for CLK3, CLK4; (default normal program)

3. When using A, B, C, D scan signals, the clock can only be extended by 2 groups; that is: when the scan is greater than 4 scans, the 15 and 16 pins of P2 are used for C and D signals (customized program)

P2 Interface Definition Illustration

Illustration	Definition	PIN	PIN	Definition	Illustration
	+5V	1	2	+5V	
	GND	3	4	GND	
	B3	5	6	R4	
	G4	7	8	B4	
	R5	9	10	G5	
DCD Devellel Output Dete	B5	11	12	R6	DCD Devellel Output Dete
RGB Parallel Output Data	G6	13	14	B6	RGB Parallel Output Data
	R7	15	16	G7	
-	B7	17	18	R8	
	G8	19	20	B8	

P3 Indicator Interface Definition

PIN#	1	2	3	4
Definition	SWITCH	LED STATE	GND	3.3V

Indicator Illustration

Indicator	Position	Status	Illustration
	D1 It goes out	Flickering Slowly at a constant speed	The receiving card is working properly, The Ethernet Cable Connection is fine, No DVI Signal Input
Status Indicator (Green)		It goes out 2 flashes at an	The receiving card is working properly, The Ethernet Cable Connection is fine, with DVI Signal Input No Gigabit Ethernet Signal The receiving card enters the boot state
Power Indicator (Red)	D2	Long Lasting On	The receiving card is normally powered

Dimensions

4 Product Specifications

Specifications

Electric Parameters	Input Voltage	DC3.5-5.5V
	Rated Current	0.4A
	Rated Power	2W
Operating Environment	Operating Temperature	-40°C ~80°C
	Operating Humidity	10%RH-90%RH
Storage Environment	Temperature	-25°C~125°C
Dimensions	70mm X 24mm	
Net Weight	10g	
Certifications	It conforms to RoHS and CE-EMC standards.	

Precautions

1. The testing (debugging) and installation should be done by the qualified

professionals

2. Anti-Static, Water-Proof and Dust-Proof Required